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Abstract

In this paper, we describe application of a single-well approximation to a bistable system. Based on this
approximation, the relationship between system response speed and steady state variance is obtained. It
becomes possible to determine the performance of stochastic resonance (SR) systems by a single measure,
the signal-to-noise ratio (SNR) gain. The peaking phenomenon of SNR gain can be found in the single-
well-approximated bistable system with the excitation of Gaussian white noise via changing system
response speed or sampling period. The mechanisms of some SR phenomena are then discussed, including
intrawell SR, parameter-induced SR.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic resonance (SR) has been the subject of both theoretical and experimental research in
the past two decades [1–30]. The most significant characteristic of SR is that, over a certain range
of signal and system parameters, it can cause a transfer of energy from a random process (noise)
to a periodic process (signal). SR was initially used to explain certain physical phenomena, such as
the earth’s climatic change [1–3]. Recently, it has been gaining increasing interest as a potential
tool of signal processing [10–18]. But until now, there is not a universal conclusion of the
mechanism of SR, which can be used to explain all the phenomena of SR in different systems or
conditions, even in bistable systems.
Originally, SR was thought to occur only in systems with bi- or multi-stable potentials. The

‘‘classical’’ description of the phenomenon of SR is that of a particle in a dual-well potential,
which is excited by a strong noise and a weak periodic signal [10]. More discussions have been
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summarized in a review paper [6]. Subsequently, it was shown that the signal-to-noise ratio (SNR)
could be enhanced by noise for underdamped single-well systems [19] and for a special type of
monostable systems [20]. Other interesting examples are given in Refs. [21–23]. Recently, Alfonsi
et al. showed us the phenomenon of intrawell SR [24], which is caused by adding Lorentz’ colored
noise.
On the other hand, the majority of the theoretical studies in this area mentioned above have

focused on non-linear systems with additive white noise. However, the behavior similar to what is
commonly ascribed to SR has been found in a linear system recently [25–27]. These studies
suggested that only noise multiplicativity or time correlation can cause the SR in a linear system.
In other words, the classical SR will not occur in a linear system excited with additive Gaussian
white noise.
In fact, linear systems are a kind of monostable systems; therefore, it is of significant

importance to study SR in monostable systems. Furthermore, a bistable system can also evolve to
a monostable system, i.e., the range of a single well. With different system parameters and
characteristics of input, there will be two kinds of conditions to make the system output standing
in the range of a single well. One is that the system bistability has been destroyed by the input
signal; namely, there will be only one potential well. In the case, the system parameters are in
suprathreshold region. Another is that the output cannot jump from one potential well to
another, usually, the noise intensity is not large enough to cause the interwell jump in a period of
signal. In the work of parameter-induced SR, it is found that the SR point mainly located in
suprathreshold region [29,30].
More generally, the interwell jump only occurs in short time interval compared with the signal

period; other parts of signal only vary in a single well. Previously, we suggested that a recovery
formula with a curve fitting could be used to diminish waveform distortion of the output from SR
system [28]. Based on the recovery formula, it is found that the final phase lag depends mainly on
the intrawell phase lag, while the interwell jump becomes a counter action to signal restoration
(see Appendix A). In practice, the phase lag cannot be omitted in processing analog signals. Since
the system response speed of intrawell motion is much larger than that of interwell, the final phase
lag will be quite small after the recovery formula. Intrawell SR becomes a promising way to
process an analog signal, especially a multi-frequency analog signal.
In the following, we will focus on a single well of a bistable system. In the beginning of

Section 2, an approximation to simplify the work on intrawell SR is introduced. Then, we will
discuss some aspects about it, including the variance of stochastic component in system output,
the condition satisfied this approximation and the variance of a recovered signal. In Section 3, we
provide a measure, considering both the system response speed and the steady state variance, to
determine the performance of SR systems. Based on this measure, several topics are discussed,
including the relation between parameter-induced SR and classical SR, the mechanism of
intrawell SR and the peaking phenomenon of SNR gain caused by changing sampling period.

2. Single-well approximation of bistable system

Consider the Brownian motion of a particle of mass m; moving in a one-dimensional
potential VðxÞ ¼ �anx2=2þ mnx4=4; an;mn > 0; with damping c ’x and excitation
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HnðtÞ ¼ hnðtÞ þ GnðtÞ

m .x þ c ’x þ V 0ðxÞ ¼ hnðtÞ þ GnðtÞ: ð1Þ

When the mass of particle is very small, the effect of inertia force can be omitted. Take the
variable transforms

an=c ¼ a; mn=c ¼ m; hnðtÞ=c ¼ hðtÞ; GnðtÞ=c ¼ GðtÞ;

the system is reduced into

’x ¼ CðxÞ þ hðtÞ þ GðtÞ; ð2Þ

where

CðxÞ ¼ ax � mx3; a; m > 0;

GðtÞ is a Gaussian white noise with zero mean E½GðtÞ� ¼ 0 and autocorrelation

/GðtÞGðt0ÞS ¼ 2Ddðt � t0Þ: ð3Þ

Here, the operator E½	� is ensemble average and / 	S is sample average, 2D is the noise intensity.
In practice, the input will be sampled. With a sampling period Dt; the variance of GðtÞ is

s2 ¼ D½GðtÞ� ¼ 2D=Dt: ð4Þ

The potential function of system (2) is

UðxÞ ¼ �ax2=2þ mx4=4� hðtÞx; ð5Þ

which is modulated by the input signal hðtÞ:

2.1. The intention of studying intrawell SR

If the input is a constant h instead of a time-varying signal, the steady state solution of the
output probability density rðxÞ can be easily obtained [29]. The steady state SNR can be defined as

SNR ¼ E2½x�=D½x�;

where E½x� ¼
R
N

�N
xrðxÞ dx and D½x� ¼ E½x2� � ðE½x�Þ2:

However, the input signal hðtÞ is a function of the time t and we hope that the system response
can trace the changing of the input signal. In this case, the input signal can be treated as a constant
during the relaxation time of system response, which is the reciprocal of system response speed l1
[29].
In practice, we first determine the system response speed l1 depended on the maximum input

signal frequency f and sampling frequency fs: The adopted system response speed satisfies

f5l15fs:

Then we obtain the maximum steady state SNR by carefully tuning the system parameters a and m
[29]. Since the system response speed is limited by the interwell jumping, the adopted input is
usually varied quite slowly.
Generally, the system response speed of intrawell motion is much larger than that of interwell

jumping. The characteristic time of interwell jumping is at the magnitude of Oðexpð1=DÞÞ; while
that of intrawell motion is at the magnitude of Oð�lnDÞ: When D51; the former is much larger
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than the latter. Intrawell SR can release the limitation on system response speed and allow a
higher input frequency.
Moreover, when handling SR by tuning system parameters, we found that the point

corresponding to the optimal system output is usually located in suprathreshold region. Namely,
SR phenomenon occurs in system with optimal system parameters is usually intrawell SR. So it is
important to explore the phenomenon of intrawell SR.
The single-well approximation will simplify the work on system (2) about intrawell motion.

Meanwhile, it does not mean that the single-well approximation can only be used when there is
only intrawell motion. With the recovery formula, the interwell jumping can be simply replaced by
line segments when the transient time of interwell jumping is short enough as compared to the
period of signal (see Appendix A).

2.2. The single-well approximation

Now consider the condition that the value of output xðtÞ is in the range of a single well. Since
the output probability is mainly gathering near a stable state (bottom of a potential well), we can
cast a Taylor expansion on potential (5)

UnðxÞEUðxsÞ þ U 0ðxsÞðx � xsÞ þ U 00ðxsÞðx � xsÞ
2=2þ oðx � xsÞ

2:

Here, xs is the location of the bottom point of corresponding potential well satisfying

U 0ðxÞ ¼ �ax þ mx3 � hðtÞ ¼ 0; ð6Þ

so that U 0ðxsÞ ¼ 0: The UðxsÞ is a constant, which can be omitted for a potential function. So the
system potential function can be approximately treated as

UnðxÞEU 00ðxsÞðx � xsÞ
2=2: ð7Þ

Commonly, there will be more than one solution from Eq. (6), here we take a stable one,
therefore, U 00ðxsÞ > 0:
Correspondingly, system (2) is then reduced into

’x ¼ �U 00ðxsÞðx � xsÞ þ GðtÞ: ð8Þ

In the following, we called the system of Eq. (8) single-well-approximated bistable (SWAB)
system. The probability density of the system output rðx; tÞ satisfies the following Fokker–Planck
equation (FPE)

@rðx; tÞ
@t

¼ �U 00ðxsÞ
@

@x
½ðx � xsÞrðx; tÞ� þ D

@2

@x2
rðx; tÞ: ð9Þ

As mentioned in our previous paper [29], the system response speed l1 is the inverse value
of a eigenvalue of Eq. (9), which dominates the transient behavior. The system response speed is
given as

l1 ¼ U 00ðxsÞ:
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2.3. The stochastic component of output

Because the input signal hðtÞ is varying with time t; xs and U 00ðxsÞ are not constant. Usually, hðtÞ
varies in a large time-scale such as signal period. If the system response speed is large enough, the
signal can be regarded as constant in a short time interval Dt;

1=l15Dt5T ;

here 1=l1 is the system response time, T is the signal period.
With a constant input hðtÞ ¼ h; assume the form of the steady state output to be

xðtÞ ¼ xs þ yðtÞ; ð10Þ

here yðtÞ is a stochastic process. Namely, the output is a combination of deterministic component
and stochastic component. Determined by Eq. (6), xs is a constant now.
Substituting Eq. (10) into Eq. (8), then

’yðtÞ ¼ �U 00ðxsÞyðtÞ þ GðtÞ: ð11Þ

It can be viewed as a system with input GðtÞ and output yðtÞ: The frequency response for this
system is

HðoÞ ¼
1

U 00ðxsÞ þ io
: ð12Þ

The relation of the mean value between input and output is

E½yðtÞ� ¼ my ¼ Hð0ÞmG; ð13Þ

and the relation of the power spectrum between input and output is

SyðoÞ ¼ jHðoÞj2SGðoÞ: ð14Þ

For GðtÞ is a zero mean Gaussian white noise, the mean value of yðtÞ is also zero. In other
words, the mean value of output from system (8) is just xs: From Eq. (3), the power spectrum of
GðtÞ is

SGðoÞ ¼
Z

N

�N

CGðtÞe�iot dt ¼ 2D:

Thus the power spectrum of yðtÞ is

SyðoÞ ¼
2D

U 002ðxsÞ þ o2
;

and the auto-correlation function of yðtÞ is

CyðtÞ ¼ /yðtÞyðt þ tÞS ¼
1

2p

Z
N

�N

SyðoÞeiot do ¼
D

U 00ðxsÞ
exp½�U 00ðxsÞt�:

Therefore, the variance of yðtÞ is

D½yðtÞ� ¼ /yðtÞyðtÞS ¼ Cyð0Þ ¼ D=U 00ðxsÞ: ð15Þ
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2.4. Discussion of the single-well approximation

In the following, we estimate the error caused by the approximation. Substituting Eq. (10) into
system (2)

’yðtÞ ¼ ayðtÞ � 3mx2s yðtÞ � 3mxsy
2ðtÞ � my3ðtÞ þ GðtÞ: ð16Þ

If the condition jyðtÞj51 is satisfied, we can omit the higher order terms of yðtÞ; and Eq. (16) can
be reduced into Eq. (11).
Consider the following form of

yðtÞ ¼ y0ðtÞ þ yeðtÞ; ð17Þ

here, y0ðtÞ is the result of the SWAB system, and yeðtÞ is the deviation caused by this
approximation. Assume that y0ðtÞ and yeðtÞ are uncorrelated. Substituting Eq. (17) into Eq. (16)

’yeðtÞ ¼ � U 00ðxsÞyeðtÞ � 3mxsy
2ðtÞ � my3ðtÞ

E � U 00ðxsÞyeðtÞ � 3mxsy
2
0ðtÞ � my30ðtÞ; ð18Þ

it can be viewed as a system with input xðtÞ ¼ �3mxsy
2
0ðtÞ � my30ðtÞ and output yeðtÞ: The frequency

response for system (18) is the same as Eq. (12). So the mean value of yeðtÞ is

E½yeðtÞ� ¼ E½xðtÞ�=U 00ðxsÞ ¼ �3mxsD=U 002ðxsÞ;

and the mean value of xðtÞ is not xs but

E½xðtÞ� ¼ E½xs þ y0ðtÞ þ yeðtÞ� ¼ xs½1� 3mD=U 002ðxsÞ�:

The relative error of mean value is

em ¼ jE½xsðtÞ� � xsj=xs ¼ 3mD=U 002ðxsÞ: ð19Þ

Consider the variance of yeðtÞ

D½yeðtÞ� ¼
Z

N

�N

1

U 002ðxsÞ þ o2
SxðoÞ doo

1

U 002ðxsÞ

Z
N

�N

SxðoÞ do ¼
D½xðtÞ�
U 002ðxsÞ

;

and

D½xðtÞ� ¼ E½ð�3mxsy
2
0ðtÞ � my30ðtÞÞ

2� ¼ 9m2x2s E½y40ðtÞ� þ m2E½y60ðtÞ� þ 6m
2xsE½y50ðtÞ�:

When the deviation is small, we assume that y0ðtÞ satisfies normal distribution function

rðy0ðtÞÞ ¼ exp½�y20ðtÞ=2s
2
0�=

ffiffiffiffiffiffi
2p

p
s0;

where s20 ¼ D½y0ðtÞ� ¼ D=U 00ðxsÞ: Then, D½xðtÞ� and D½yeðtÞ� can be given as

D½xðtÞ� ¼ 27m2x2s D2=U 002ðxsÞ þ 15m2D3=U 003ðxsÞ;

D½yeðtÞ�o ½27m2x2s U 00ðxsÞ þ 15m2D�D2=U 005ðxsÞ:

Finally, the variance of yðtÞ is

D½yðtÞ� ¼ D½y0ðtÞ þ yeðtÞ�pD½y0ðtÞ� þ D½yeðtÞ� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½y0ðtÞ�D½yeðtÞ�

p
;

the deviation of variance is

DDpD½yeðtÞ� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½y0ðtÞ�D½yeðtÞ�

p
:
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Simply, we consider the case of small input signal amplitude, then

xsE7
ffiffiffiffiffiffiffiffi
a=m

p
; U 00ðxsÞE2a:

Meanwhile a=m ¼ Oð1Þ; then D½yeðtÞ�=D½y0ðtÞ� ¼ Oðs20Þ:
When s051; the relative error of variance is

es ¼ DD=D½y0ðtÞ�pD½yeðtÞ�=D½y0ðtÞ� þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½yeðtÞ�=D½y0ðtÞ�

p
¼ Oðs0Þ: ð20Þ

Meanwhile, the relative error of mean value is em ¼ Oðs20Þ: Consequently, the condition satisfying
the single-well approximation is

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½y0ðtÞ�

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=U 00ðxsÞ

p
51: ð21Þ

2.5. The variance of recovered result

With the recovery formula (see Appendix A), output (10) becomes

hout ¼ � Cðxs þ yðtÞÞ ¼ �CðxsÞ � C0ðxsÞyðtÞ þ OðyðtÞÞ2

E h � C0ðxsÞyðtÞ ¼ h þ U 00ðxsÞyðtÞ: ð22Þ

The variance of recovered result hout is

D½hout� ¼ U 002ðxsÞD½yðtÞ� ¼ U 00ðxsÞD: ð23Þ

Comparing the variance of recovered result with the variance of GðtÞ; the ratio of the variances is

Z ¼ D½hout�=D½GðtÞ� ¼ U 00ðxsÞDt=2: ð24Þ

In a previous paper, we presented a simulation example considering an original signal

hðtÞ ¼ 0:18 sinð0:2ptÞ þ 0:18 sinð0:6ptÞ;

combining with a Gaussian white noise of s2 ¼ 1 as the input, and a sampling period Dt ¼ 0:001:
Here, we select the system parameters as a ¼ m ¼ 5 so that the output is in the range of a single
well. The average value of U 00ðxsÞ is about 10.6, and Z ¼ U 00ðxsÞDt=2E0:0053: The variance of
recovered result is only 0.53 percent of that of original signal.
Figs. 1a and b are the results of the simulation mentioned above. The variance of recovered

result (Fig. 1b) is much smaller than that of original signal (Fig. 1a).
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3. The peaking phenomenon of SNR gain

3.1. A measure of system performance

Only the steady state solution has been considered in Section 2. We now consider the
evolvement of the deterministic component. Assume that this evolvement is the kind of

xðtÞ ¼ xs � ðxs � x0Þ exp½�U 00ðxsÞt�: ð25Þ

Namely, the output approaches the steady state solution of deterministic component
exponentially. The speed of such approach is the system response speed.
According to the recovery formula, the output (from recovery formula) is

hout ¼ h þ C0ðxsÞðxs � x0Þ exp½�U 00ðxsÞt� þ Dh;

where Dh ¼ 3mxsðxs � x0Þ
2 exp½�2U 00ðxsÞt� þ mðxs � x0Þ

3 exp½�3U 00ðxsÞt�: The term Dh approaches
to zero faster than the other terms. So that we omit Dh: Meanwhile,

h0 ¼ �Cðx0Þ ¼ �Cðxs þ x0 � xsÞ ¼ �CðxsÞ � C0ðxsÞðx0 � xsÞ þ Oðx0 � xsÞ
2;

when ðxs � x0Þ is small, there will be

h � h0 ¼ � CðxsÞ � h0E� C0ðxsÞðxs � x0Þ;

houtðtÞE h � ðh � h0Þ exp½�U 00ðxsÞt�: ð26Þ

As mentioned above, the signal can be regarded as a constant in a short time interval when
system response speed is large enough. The performance of output corresponding to every
segment of signal is important to the performance of the whole output. So we consider a single
segment lasts from time t ¼ t0 to time t ¼ t0 þ T ¼ t0 þ kDt; Dt is the sampling period and k is a
natural number. The signal amplitude is h ¼ H and the original value of recovered result is h0 ¼ 0:
In this case, the recovered result is

houtðtÞ ¼ Hð1� exp½�U 00ðxsÞt�Þ; t0ptpt0 þ T : ð27Þ

Define the SNR of input and output to be

SNRin ¼

R t0þT

t0
H2 dtR t0þT

t0
D½GðtÞ� dt

¼
H2Dt

2D
; ð28Þ

SNRout ¼
H2

DU 00ðxsÞT
T �

3

2U 00ðxsÞ
þ
2 exp½�U 00ðxsÞT �

U 00ðxsÞ
�
exp½�2U 00ðxsÞT �

2U 00ðxsÞ

� �
: ð29Þ

The gain of input and out SNR is given as

gain ¼
2

DtU 00ðxsÞ
1�

3

2U 00ðxsÞT
þ
2 exp½�U 00ðxsÞT �

U 00ðxsÞT
�
exp½�2U 00ðxsÞT �
2U 00ðxsÞT

� �
: ð30Þ

Notice that T ¼ kDt and Eqs. (24), (30) can be transformed into

gain ¼
1

Z
1�

3

4kZ
þ
exp½�2kZ�

kZ
�
exp½�4kZ�
4kZ

� �
: ð31Þ
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The relation of SNR gain and is given in Figs. 2a and b. From the two figures, we can find the
peaking phenomenon.
In each of Figs. 2a and b, there are four curves. Each of these curves corresponds to a different

k: Here, we present the result with k ¼ 100; 50; 25 and 12. With the decreasing of k; the peaking
phenomenon is weakening, and even disappears when k is small. Previously, it is proposed that
over-sampling is the necessary condition of SR. We can draw the same conclusion from the two
figures.
If we fix the sampling period Dt and change U 00ðxsÞ; in other words, alter the system parameters

to change the system response speed, a peak of SNR gain will present itself with a certain value of
U 00ðxsÞ; as we proposed previously in Ref. [29]. We named the certain U 00ðxsÞ as critical response
speed (CRS).
If we fix the system parameters and change Dt; the peaking phenomenon will also appear. The

variance of input noise is s2 ¼ 2D=Dt ¼ U 00ðxsÞD=Z: In Fig. 2b, with the increasing of s2ð1=ZÞ; a
peaking of the SNR gain occurs.

3.2. Discussion

From the above, changing both the system response speed and the sampling period will induce
the behavior similar to SR. But in fact, the SWAB system is equivalent to a linear system, in which
the classical SR will not occur when excited with additive Gaussian white noise. The peaking
phenomenon here will be ascribed to parameter-induced SR [29]. What is the relation between
classical and parameter-induced SR? We will discuss it in the following. Furthermore, the peaking
phenomenon caused by changing sampling period will be indicated.
In previous papers [29,30], we proposed that the system response speed and the sampling period

are incompatible, therefore, the system response speed and the steady state SNR are not
compatible. The phenomenon of SR can be realized by adjusting system parameters. The action of
increasing the system response speed will induce larger variance in output while the waveform
distortion is decreasing because the system can even follow up the change of noise. Contrarily,
decreasing of the system response speed can damp the variety of noise but the change of signal
cannot be well followed up.
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In a bistable system, the increasing of noise intensity will boost the speed of interwell jumping.
Therefore, adding noise is another way to change system response speed. If the system response
speed determined by system parameters is less than the CRS, adding noise may cause the system
response speed to increase through the CRS to a value beyond the CRS. During this course, the
peaking of SNR gain occurs. It is a course that the action of increasing noise intensity enhanced
the SNR gain. It is suggested that parameter-induced SR is the base of classical SR.
Meanwhile, the increasing of noise intensity will induce SNR drop of input. Though the

seeming SNR gain can be improved, but the SNR of output will not be the best one. Furthermore,
if the system response speed determined by system parameters is greater than the CRS, both the
SNR of input and SNR gain will drop when the noise intensity is increased. Obviously, the
classical SR is sometime restricted and the result via adding noise is worse than that of changing
system parameters.
Now, let us talk about the mechanism of intrawell SR. The peaking phenomenon in SWAB

system via changing system parameters is the parameter-induced SR of intrawell. According to
the analysis above, if any change of system response speed via adding noise can be found, the
classical SR will occurs in SWAB system.
In the SWAB system, the system response speed is dominated by intrawell oscillation, while

which is dominated by interwell jumping in a bistable system. In this paper, we only discussed the
case that the system is excited by Gaussian white noise. The noise intensity affects nothing on the
system response speed of SWAB system. The classical SR, which is induced by adding noise,
cannot be found.
As mentioned in Section 1, noise multiplicativity and time correlation are necessary conditions

for the SR to occur in a linear system. When excited by colored or multiplicative noise, adding
noise will effect the system response speed of linear system and the SWAB system. So the classical
SR will occur in the SWAB system when excited by colored or multiplicative noise.
Finally, the choosing of a sampling period is a key point in signal processing. Previously, the

sampling period is determined by the signal period and the sampling theorem. In work reported in
this paper, we found the peaking phenomenon of SNR gain via changing the sampling period.
Under certain conditions, tuning sampling period can induce the peaking phenomenon of SNR
gain while the system parameters are fixed. It may give some valuable information to signal
processing.
Sampling a noise at the time t ¼ %t; the sampling result xð%tÞ is a stochastic variable with zero

mean and the variance s2 	 xð%tÞ; which is an real variable, will not change with the different
sampling period, so the variance s2 is independent of the sampling period Dt:
When sampling a Gaussian white noise with different sampling period Dt1 and Dt2; the

corresponding noise intensities are

D1 ¼ Dt1s2=2; D2 ¼ Dt2s2=2;

where s2 is the real value of the noise variance. From the FPE (9), different noise intensity D will
induce different steady state SNR [29]. The changing of sampling period will influence the value of
CRS.
Based on Benzi’s opinion [1] and our practice, SR systems suppress the noise with continuous

spectrum mainly. When the noise is a white noise, the effect is the best. Sampling with smaller
sampling period, the bandwidth of noise sample will be wider and the effect will be better.
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4. Conclusion and outlook

In this paper, we studied a SWAB system excited with additive Gaussian white noise. The
SWAB system is equivalent to a linear system, so the intensity of Gaussian white noise affects
nothing on the system response speed. But in such condition, we also demonstrated the peaking
phenomenon of SNR gain via tuning system parameters or sampling period. When excited with
colored or multiplicative noise, the system response speed of SWAB system will change with the
noise intensity. So we suggested that the classical SR would occur in a SWAB system when excited
with colored or multiplicative noise.
Though the peaking phenomenon is not the same as previous result of classical SR, it may give

some benefits to signal processing via these systems. It is confirmed that the phenomenon of SR
may occur via tuning system parameters. On the other hand, the phenomenon that tuning
sampling period can induce the peaking phenomenon of SNR gain while the system parameters
are fixed may give some valuable information to signal processing. How to determine the optimal
sampling period is a valuable topic.
Based on the single-well approximation, we got the relation between system response speed and

steady state variance. Then we tentatively provided a measure (the SNR gain in Section 3)
considered both system response speed and steady state variance, to determine the performance of
SR systems. But the measure we presented in this paper is only a cursory one. It is valuable to
construct a particular one considering the waveform of input signal and the phase lag in output
signal.
The phase lag is an important factor in analog signal processing. Based on the work of intrawell

SR, we can give the method to estimate the phase lag to compensate the output. This work will be
presented in another paper.
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Appendix A. Recovery formula and the restriction

Consider the system

’x ¼ CðxÞ þ hðtÞ þ GðtÞ: ðA:1Þ

If j ’xj5jhj; there will be

hE� CðxÞ � GðtÞ: ðA:2Þ

Take the mean value for this equation and notice that /GðtÞS ¼ 0; then

%hðtÞ ¼ /� CðxÞSE� Cð *xÞ: ðA:3Þ
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Here, %hðtÞ ¼ /hðtÞS is the deterministic term, and *xðtÞ ¼ /xðtÞS: With this result, the condition
j ’xj5jhj becomes

jh0ðtÞj5jC0ð *xÞhðtÞj: ðA:4Þ

Obviously, when hðtÞ is close to zero, condition (A.4) is not satisfied and the output cannot be
recovered by Eq. (A.3). A system output is shown in Fig. 3a and the recovered result is compared
with the input signal in Fig. 3b. With the comparison between Figs. 3 a and b, it can be found that
the error caused by recovery formula occurs accompanying the interwell transition (the jumping
between the two potential well). With the recovery formula, the interwell jumping becomes a
counteraction to signal restoration. If the transient time is short enough as compared to the period
of signal, we only need to correct the recovered result in short time slices in which interwell
transition occurs.
The time required for the transition is a statistical value, the expected mean value of which

varies with system characteristic time 1=l1 (l1 is the minimum nonzero eigenvalue for the Fokker–
Planck equation of system (2)) [29]. The transient time is diminishing when l1 is increasing. Since
l1 is determined by system parameters and the noise intensity D; we can make the transient time
very short by choosing certain system parameters a and m: For this case, the error part can be
simply corrected by linear interpolation.
This information can also be found in another manuscript we submitted recently [28].

Moreover, the intrawell phase lag and other interesting things have been discussed in that paper.
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